::p_load(sf, spdep, tmap, tidyverse, knitr) pacman
2A: Spatial Weights and Application
1. Overview
In this exercise, I learn to calculate spatial weights in R. The core of my learning revolves around computing spatial weights, allowing me to understand the spatial relationships and dependencies within my data. Moreover, I gain hands-on experience in generating spatially lagged variables, which enables me to conduct in-depth analyses and interpret geospatial data with a nuanced perspective.
2. Getting Started
The following code chunk installs and loads sf, readr, dplyr, spdep, tmap and purrr packages into R environment.
sf package is used to import geospatial data into my working environment.
spdep package is used to calculate spatial weights and compute spatially lagged variables.
tmap package is used to create thematic maps in R.
tidyverse package is used to provide a unified and consistent set of data manipulation and visualization tools for data analysis and exploration.
knitr package is used to enable dynamic report generation and literate programming.
The data sets used are:
Hunan county boundary layer, in ESRI shapefile format.
Hunan_2012.csv which contains selected Hunan’s local development indicators in 2012.
3. Getting the Data Into R Environment
3.1. Importing Shapefile into R Environment
The following code chunk utilizes the st_read()
function from the sf package to import the Hunan
shapefile into R, creating a simple feature data frame named hunan
.
<- st_read(dsn = "data/geospatial",
hunan layer = "Hunan")
Reading layer `Hunan' from data source
`D:\scwsu\ISSS624\Hands-on_Ex2\data\geospatial' using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS: WGS 84
3.2. Importing CSV File into R Environment
The following code chunk utilizes the st_read()
function from the sf package to import the Hunan_2012.csv
file into R, creating a R dataframe class named hunan2012
.
<- read_csv("data/aspatial/Hunan_2012.csv") hunan2012
3.3. Performing Relational Join
The following code chunks utilizes the left_join()
function from the dplyr package to update the attribute table of hunan’s undefinedygons DataFrame with the attribute fields of hunan2012 dataframe.
<- left_join(hunan,hunan2012)%>%
hunan select(1:4, 7, 15)
3.4. Visualising Regional Development Indicator
The following code chunk utilizes qtm()
function from the tmap package to build a basemap and choropleth map showing the distribution of GDPPC 2012.
GDPPC stands for “Gross Domestic Product Per Capita”. It is a measure of a region’s economic output that accounts for its number of people. The GDP per capita is often considered an indicator of a country’s standard of living, although it is not a measure of personal income.
<- tm_shape(hunan) +
basemap tm_polygons() +
tm_text("NAME_3", size=0.5)
<- qtm(hunan, "GDPPC")
gdppc tmap_arrange(basemap, gdppc, asp=1, ncol=2)
3.5. Computing Contiguity Spatial Weights
3.5.1. Computing (QUEEN) Contiguity Based Neighbors
The following code chunk utilizes the poly2nb()
function form the spdep package to create contiguity weight matrices for the study area. This function constructs a list of neighbors where the regions share contiguous boundaries and also allows for a queen
argument, which can be set to TRUE (default setting) or FALSE. If the argument is not explicitly set to “queen
= FALSE”, the function will generate a list of first-order neighbors based on the Queen
’s contiguity criterion.
<- poly2nb(hunan, queen=TRUE)
wm_q summary(wm_q)
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Link number distribution:
1 2 3 4 5 6 7 8 9 11
2 2 12 16 24 14 11 4 2 1
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 11 links
The summary report indicates that in Hunan, there are 88 area units. Among these, the most connected area unit is surrounded by 11 neighbors. On the other hand, there are two area units that have only one neighbor each.
In the analysis, the object wm_q provides a list of neighboring polygons for each polygon in our study. For instance, to view the neighbors of the first polygon in this object, a specific command is used to extract this information.
1]] wm_q[[
[1] 2 3 4 57 85
Polygon 1 within the Hunan SpatialPolygons DataFrame class has 5 neighbors. These neighbors are identified by their respective polygon IDs, which are numerical representations assigned to each polygon in the dataset.
The following code chunk is used to retrieve the country name of Polygon ID = 1.
$County[1] hunan
[1] "Anxiang"
The output reveals that Polygon ID=1 is Anxiang county.
The following code chunk is used to reveal the country names of the five neighboring polygons.
$NAME_3[c(2,3,4,57,85)] hunan
[1] "Hanshou" "Jinshi" "Li" "Nan" "Taoyuan"
The following code chunk is used to retrieve the GDPPC of these five countries.
<- wm_q[[1]]
nb1 <- hunan$GDPPC[nb1]
nb1 nb1
[1] 20981 34592 24473 21311 22879
The result above states that the GDPPC of the five nearest neighbors based on Queen
’s method are 20981, 34592, 24473, 21311 and 22879 respectively.
The following code chunk utilizes str()
function to display the complete weight matrix.
str(wm_q)
List of 88
$ : int [1:5] 2 3 4 57 85
$ : int [1:5] 1 57 58 78 85
$ : int [1:4] 1 4 5 85
$ : int [1:4] 1 3 5 6
$ : int [1:4] 3 4 6 85
$ : int [1:5] 4 5 69 75 85
$ : int [1:4] 67 71 74 84
$ : int [1:7] 9 46 47 56 78 80 86
$ : int [1:6] 8 66 68 78 84 86
$ : int [1:8] 16 17 19 20 22 70 72 73
$ : int [1:3] 14 17 72
$ : int [1:5] 13 60 61 63 83
$ : int [1:4] 12 15 60 83
$ : int [1:3] 11 15 17
$ : int [1:4] 13 14 17 83
$ : int [1:5] 10 17 22 72 83
$ : int [1:7] 10 11 14 15 16 72 83
$ : int [1:5] 20 22 23 77 83
$ : int [1:6] 10 20 21 73 74 86
$ : int [1:7] 10 18 19 21 22 23 82
$ : int [1:5] 19 20 35 82 86
$ : int [1:5] 10 16 18 20 83
$ : int [1:7] 18 20 38 41 77 79 82
$ : int [1:5] 25 28 31 32 54
$ : int [1:5] 24 28 31 33 81
$ : int [1:4] 27 33 42 81
$ : int [1:3] 26 29 42
$ : int [1:5] 24 25 33 49 54
$ : int [1:3] 27 37 42
$ : int 33
$ : int [1:8] 24 25 32 36 39 40 56 81
$ : int [1:8] 24 31 50 54 55 56 75 85
$ : int [1:5] 25 26 28 30 81
$ : int [1:3] 36 45 80
$ : int [1:6] 21 41 47 80 82 86
$ : int [1:6] 31 34 40 45 56 80
$ : int [1:4] 29 42 43 44
$ : int [1:4] 23 44 77 79
$ : int [1:5] 31 40 42 43 81
$ : int [1:6] 31 36 39 43 45 79
$ : int [1:6] 23 35 45 79 80 82
$ : int [1:7] 26 27 29 37 39 43 81
$ : int [1:6] 37 39 40 42 44 79
$ : int [1:4] 37 38 43 79
$ : int [1:6] 34 36 40 41 79 80
$ : int [1:3] 8 47 86
$ : int [1:5] 8 35 46 80 86
$ : int [1:5] 50 51 52 53 55
$ : int [1:4] 28 51 52 54
$ : int [1:5] 32 48 52 54 55
$ : int [1:3] 48 49 52
$ : int [1:5] 48 49 50 51 54
$ : int [1:3] 48 55 75
$ : int [1:6] 24 28 32 49 50 52
$ : int [1:5] 32 48 50 53 75
$ : int [1:7] 8 31 32 36 78 80 85
$ : int [1:6] 1 2 58 64 76 85
$ : int [1:5] 2 57 68 76 78
$ : int [1:4] 60 61 87 88
$ : int [1:4] 12 13 59 61
$ : int [1:7] 12 59 60 62 63 77 87
$ : int [1:3] 61 77 87
$ : int [1:4] 12 61 77 83
$ : int [1:2] 57 76
$ : int 76
$ : int [1:5] 9 67 68 76 84
$ : int [1:4] 7 66 76 84
$ : int [1:5] 9 58 66 76 78
$ : int [1:3] 6 75 85
$ : int [1:3] 10 72 73
$ : int [1:3] 7 73 74
$ : int [1:5] 10 11 16 17 70
$ : int [1:5] 10 19 70 71 74
$ : int [1:6] 7 19 71 73 84 86
$ : int [1:6] 6 32 53 55 69 85
$ : int [1:7] 57 58 64 65 66 67 68
$ : int [1:7] 18 23 38 61 62 63 83
$ : int [1:7] 2 8 9 56 58 68 85
$ : int [1:7] 23 38 40 41 43 44 45
$ : int [1:8] 8 34 35 36 41 45 47 56
$ : int [1:6] 25 26 31 33 39 42
$ : int [1:5] 20 21 23 35 41
$ : int [1:9] 12 13 15 16 17 18 22 63 77
$ : int [1:6] 7 9 66 67 74 86
$ : int [1:11] 1 2 3 5 6 32 56 57 69 75 ...
$ : int [1:9] 8 9 19 21 35 46 47 74 84
$ : int [1:4] 59 61 62 88
$ : int [1:2] 59 87
- attr(*, "class")= chr "nb"
- attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
- attr(*, "call")= language poly2nb(pl = hunan, queen = TRUE)
- attr(*, "type")= chr "queen"
- attr(*, "sym")= logi TRUE
3.5.2. Creating (ROOK) contiguity based neighbours
The following code chunk is used to compute Rook
contiguity weight matrix.
<- poly2nb(hunan, queen=FALSE)
wm_r summary(wm_r)
Neighbour list object:
Number of regions: 88
Number of nonzero links: 440
Percentage nonzero weights: 5.681818
Average number of links: 5
Link number distribution:
1 2 3 4 5 6 7 8 9 10
2 2 12 20 21 14 11 3 2 1
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 10 links
The summary above reveals that in Hunan, there are a total of 88 area units. Among these, the area unit with the highest connectivity has 10 neighbors. Additionally, it is noted that there are two distinct area units that have only one neighbor each.
3.5.3. Visualising contiguity weights
A connectivity graph that visualizes lines connecting neighboring points is created. Since we are dealing with polygons, I first need to convert these into points. The most common approach for this is to use the centroids of the polygons. Functions from the sf package are used to calculate these centroids.
Specifically, I need to extract the latitude and longitude of each centroid to create a connectivity graph. This requires a bit more than just applying the st_centroid
function to the us.bound sf object. To achieve this, I utilize a mapping function that applies a specific function to each element of a vector, returning a vector of equal length. My input vector is the geometry column of us.bound, and the function used is st_centroid
.
The map_dbl
function from the purrr package is employed to map st_centroid
over the geometry column of us.bound. To extract the longitude values, I used double bracket notation [[]]
with 1
, which allowed me to get the first value (longitude) from each centroid. This method effectively provided the necessary longitude and latitude coordinates for each centroid in a separate dataframe, setting the stage for creating the connectivity graph.
<- purrr::map_dbl(hunan$geometry, ~st_centroid(.x)[[1]]) longitude
Similar process is done to obtain the latitude values of the centroids, however with a crucial difference. Instead of accessing the first value of each centroid, I access the second value by using double bracket notation [[2]]
in the mapping function. This approach allows me to extract the latitude, which is typically the second value in the coordinate pair of each centroid.
<- map_dbl(hunan$geometry, ~st_centroid(.x)[[2]]) latitude
Having obtained both the latitude and longitude coordinates for each centroid, I then combine these two sets of data into a single object. This is accomplished using the cbind
function in R, which binds the two vectors column-wise. Applying cbind
creates a single data frame where each row corresponds to a centroid, with one column for longitude and another for latitude. This consolidated data structure is essential for my subsequent analysis and for constructing the connectivity graph.
<- cbind(longitude, latitude) coords
After combining the latitude and longitude data, the first few rows of this merged dataset are checked to ensure correct formatting. This verification step is essential to confirm the proper alignment and accuracy of the data for further analysis.
head(coords)
longitude latitude
[1,] 112.1531 29.44362
[2,] 112.0372 28.86489
[3,] 111.8917 29.47107
[4,] 111.7031 29.74499
[5,] 111.6138 29.49258
[6,] 111.0341 29.79863
3.5.3.1 Plotting Queen, Rook, Both Queen and Rook Contiguity Based Neighbours Maps
plot(hunan$geometry, border="lightgrey")
plot(wm_q, coords, pch = 19, cex = 0.6, add = TRUE, col= "red")
plot(hunan$geometry, border="lightgrey")
plot(wm_r, coords, pch = 19, cex = 0.6, add = TRUE, col = "red")
par(mfrow=c(1,2))
plot(hunan$geometry, border="lightgrey")
plot(wm_q, coords, pch = 19, cex = 0.6, add = TRUE, col= "red", main="Queen Contiguity")
plot(hunan$geometry, border="lightgrey")
plot(wm_r, coords, pch = 19, cex = 0.6, add = TRUE, col = "red", main="Rook Contiguity")
3.6. Computing Distance Based Neighbors
In this part of the exercise, I focus on creating distance-based weight matrices using the dnearneigh()
function from the spdep package. This function determines neighboring region points based on Euclidean distance, confined within specified distance bounds (lower d1=
and upper d2=
bounds) set by the bounds=
argument. Additionally, if the coordinates used are unprojected and either specified in the coordinates object x
or represented as a two-column matrix with longlat=TRUE
, the function calculates great circle distances in kilometers, assuming the WGS84 reference ellipsoid. This approach is crucial for accurately determining spatial relationships based on geographic distance.
3.6.1. Determining the Cut-off Distance
To determine the upper limit for the distance band, I follow these steps:
Use
knearneigh()
function from the spdep package to generate a matrix containing the indices of points that are the k nearest neighbors of each other.Transform the object returned by
knearneigh()
into a neighbors list of classnb
. This was achieved by using theknn2nb()
function, which converts the knn object into a list of integer vectors, each vector containing the neighbor region number IDs.Employ the
nbdists()
function from spdep to calculate the lengths of the edges connecting each pair of neighbors. This function returns the lengths in the units of the coordinates if they are projected, or in kilometers if they are not.Use the
unlist()
function to remove the list structure from the object returned bynbdists()
, thereby simplifying the data for further analysis. This step was essential for accurately establishing the distance-based relationships between the different regional units.
#coords <- coordinates(hunan)
<- knn2nb(knearneigh(coords))
k1 <- unlist(nbdists(k1, coords, longlat = TRUE))
k1dists summary(k1dists)
Min. 1st Qu. Median Mean 3rd Qu. Max.
24.79 32.57 38.01 39.07 44.52 61.79
The summary above indicates that the maximum distance to the nearest neighbor among the units is 61.79 kilometers. Based on this, I set 61.79 km as the upper threshold for the distance band in my analysis. This decision ensures that every unit in the study is guaranteed to have at least one neighbor within this specified distance range, thus maintaining the integrity and relevance of the spatial relationships in the data.
3.6.2. Computing Fixed Distance Weight Matrix
The following code chunk uses dnearneigh()
function to compute the distance weight matrix.
<- dnearneigh(coords, 0, 62, longlat = TRUE)
wm_d62 wm_d62
Neighbour list object:
Number of regions: 88
Number of nonzero links: 324
Percentage nonzero weights: 4.183884
Average number of links: 3.681818
The result reveals that the “Average number of links” is 3.681818. The “Average number of links: 3.681818” in the summary of the wm_d62 object indicates the average number of neighbors each region has within the specified distance range. Specifically, it means that on average, each of the 88 regions in the dataset has about 3.68 neighboring regions (or links) within a distance of up to 62 kilometers. This average is calculated based on the total number of links (or neighbor connections) across all regions, divided by the total number of regions. It provides a measure of how interconnected the regions are within the defined distance threshold.
The following code chunk uses str()
to display the content from wm_d62 weight matrix.
str(wm_d62)
List of 88
$ : int [1:5] 3 4 5 57 64
$ : int [1:4] 57 58 78 85
$ : int [1:4] 1 4 5 57
$ : int [1:3] 1 3 5
$ : int [1:4] 1 3 4 85
$ : int 69
$ : int [1:2] 67 84
$ : int [1:4] 9 46 47 78
$ : int [1:4] 8 46 68 84
$ : int [1:4] 16 22 70 72
$ : int [1:3] 14 17 72
$ : int [1:5] 13 60 61 63 83
$ : int [1:4] 12 15 60 83
$ : int [1:2] 11 17
$ : int 13
$ : int [1:4] 10 17 22 83
$ : int [1:3] 11 14 16
$ : int [1:3] 20 22 63
$ : int [1:5] 20 21 73 74 82
$ : int [1:5] 18 19 21 22 82
$ : int [1:6] 19 20 35 74 82 86
$ : int [1:4] 10 16 18 20
$ : int [1:3] 41 77 82
$ : int [1:4] 25 28 31 54
$ : int [1:4] 24 28 33 81
$ : int [1:4] 27 33 42 81
$ : int [1:2] 26 29
$ : int [1:6] 24 25 33 49 52 54
$ : int [1:2] 27 37
$ : int 33
$ : int [1:2] 24 36
$ : int 50
$ : int [1:5] 25 26 28 30 81
$ : int [1:3] 36 45 80
$ : int [1:6] 21 41 46 47 80 82
$ : int [1:5] 31 34 45 56 80
$ : int [1:2] 29 42
$ : int [1:3] 44 77 79
$ : int [1:4] 40 42 43 81
$ : int [1:3] 39 45 79
$ : int [1:5] 23 35 45 79 82
$ : int [1:5] 26 37 39 43 81
$ : int [1:3] 39 42 44
$ : int [1:2] 38 43
$ : int [1:6] 34 36 40 41 79 80
$ : int [1:5] 8 9 35 47 86
$ : int [1:5] 8 35 46 80 86
$ : int [1:5] 50 51 52 53 55
$ : int [1:4] 28 51 52 54
$ : int [1:6] 32 48 51 52 54 55
$ : int [1:4] 48 49 50 52
$ : int [1:6] 28 48 49 50 51 54
$ : int [1:2] 48 55
$ : int [1:5] 24 28 49 50 52
$ : int [1:4] 48 50 53 75
$ : int 36
$ : int [1:5] 1 2 3 58 64
$ : int [1:5] 2 57 64 66 68
$ : int [1:3] 60 87 88
$ : int [1:4] 12 13 59 61
$ : int [1:5] 12 60 62 63 87
$ : int [1:4] 61 63 77 87
$ : int [1:5] 12 18 61 62 83
$ : int [1:4] 1 57 58 76
$ : int 76
$ : int [1:5] 58 67 68 76 84
$ : int [1:2] 7 66
$ : int [1:4] 9 58 66 84
$ : int [1:2] 6 75
$ : int [1:3] 10 72 73
$ : int [1:2] 73 74
$ : int [1:3] 10 11 70
$ : int [1:4] 19 70 71 74
$ : int [1:5] 19 21 71 73 86
$ : int [1:2] 55 69
$ : int [1:3] 64 65 66
$ : int [1:3] 23 38 62
$ : int [1:2] 2 8
$ : int [1:4] 38 40 41 45
$ : int [1:5] 34 35 36 45 47
$ : int [1:5] 25 26 33 39 42
$ : int [1:6] 19 20 21 23 35 41
$ : int [1:4] 12 13 16 63
$ : int [1:4] 7 9 66 68
$ : int [1:2] 2 5
$ : int [1:4] 21 46 47 74
$ : int [1:4] 59 61 62 88
$ : int [1:2] 59 87
- attr(*, "class")= chr "nb"
- attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
- attr(*, "call")= language dnearneigh(x = coords, d1 = 0, d2 = 62, longlat = TRUE)
- attr(*, "dnn")= num [1:2] 0 62
- attr(*, "bounds")= chr [1:2] "GE" "LE"
- attr(*, "nbtype")= chr "distance"
- attr(*, "sym")= logi TRUE
Combined table()
and card()
functions of spdep package can also be used to display the structure of the weight matrix.
table(hunan$County, card(wm_d62))
1 2 3 4 5 6
Anhua 1 0 0 0 0 0
Anren 0 0 0 1 0 0
Anxiang 0 0 0 0 1 0
Baojing 0 0 0 0 1 0
Chaling 0 0 1 0 0 0
Changning 0 0 1 0 0 0
Changsha 0 0 0 1 0 0
Chengbu 0 1 0 0 0 0
Chenxi 0 0 0 1 0 0
Cili 0 1 0 0 0 0
Dao 0 0 0 1 0 0
Dongan 0 0 1 0 0 0
Dongkou 0 0 0 1 0 0
Fenghuang 0 0 0 1 0 0
Guidong 0 0 1 0 0 0
Guiyang 0 0 0 1 0 0
Guzhang 0 0 0 0 0 1
Hanshou 0 0 0 1 0 0
Hengdong 0 0 0 0 1 0
Hengnan 0 0 0 0 1 0
Hengshan 0 0 0 0 0 1
Hengyang 0 0 0 0 0 1
Hongjiang 0 0 0 0 1 0
Huarong 0 0 0 1 0 0
Huayuan 0 0 0 1 0 0
Huitong 0 0 0 1 0 0
Jiahe 0 0 0 0 1 0
Jianghua 0 0 1 0 0 0
Jiangyong 0 1 0 0 0 0
Jingzhou 0 1 0 0 0 0
Jinshi 0 0 0 1 0 0
Jishou 0 0 0 0 0 1
Lanshan 0 0 0 1 0 0
Leiyang 0 0 0 1 0 0
Lengshuijiang 0 0 1 0 0 0
Li 0 0 1 0 0 0
Lianyuan 0 0 0 0 1 0
Liling 0 1 0 0 0 0
Linli 0 0 0 1 0 0
Linwu 0 0 0 1 0 0
Linxiang 1 0 0 0 0 0
Liuyang 0 1 0 0 0 0
Longhui 0 0 1 0 0 0
Longshan 0 1 0 0 0 0
Luxi 0 0 0 0 1 0
Mayang 0 0 0 0 0 1
Miluo 0 0 0 0 1 0
Nan 0 0 0 0 1 0
Ningxiang 0 0 0 1 0 0
Ningyuan 0 0 0 0 1 0
Pingjiang 0 1 0 0 0 0
Qidong 0 0 1 0 0 0
Qiyang 0 0 1 0 0 0
Rucheng 0 1 0 0 0 0
Sangzhi 0 1 0 0 0 0
Shaodong 0 0 0 0 1 0
Shaoshan 0 0 0 0 1 0
Shaoyang 0 0 0 1 0 0
Shimen 1 0 0 0 0 0
Shuangfeng 0 0 0 0 0 1
Shuangpai 0 0 0 1 0 0
Suining 0 0 0 0 1 0
Taojiang 0 1 0 0 0 0
Taoyuan 0 1 0 0 0 0
Tongdao 0 1 0 0 0 0
Wangcheng 0 0 0 1 0 0
Wugang 0 0 1 0 0 0
Xiangtan 0 0 0 1 0 0
Xiangxiang 0 0 0 0 1 0
Xiangyin 0 0 0 1 0 0
Xinhua 0 0 0 0 1 0
Xinhuang 1 0 0 0 0 0
Xinning 0 1 0 0 0 0
Xinshao 0 0 0 0 0 1
Xintian 0 0 0 0 1 0
Xupu 0 1 0 0 0 0
Yanling 0 0 1 0 0 0
Yizhang 1 0 0 0 0 0
Yongshun 0 0 0 1 0 0
Yongxing 0 0 0 1 0 0
You 0 0 0 1 0 0
Yuanjiang 0 0 0 0 1 0
Yuanling 1 0 0 0 0 0
Yueyang 0 0 1 0 0 0
Zhijiang 0 0 0 0 1 0
Zhongfang 0 0 0 1 0 0
Zhuzhou 0 0 0 0 1 0
Zixing 0 0 1 0 0 0
3.6.2.1. Plotting Fixed Distance Weight Matrix
plot(hunan$geometry, border="lightgrey")
plot(wm_d62, coords, add=TRUE)
plot(k1, coords, add=TRUE, col="red", length=0.08)
par(mfrow=c(1,2))
plot(hunan$geometry, main="1st nearest neighbours", border="lightgrey")
plot(k1, coords, add=TRUE, col="red", length=0.08)
plot(hunan$geometry, main="Distance link", border="lightgrey")
plot(wm_d62, coords, add=TRUE, pch = 19, cex = 0.6)
In the spatial data visualization, red lines indicate connections to each region’s nearest neighbor, while black lines represent links to all neighbors within a 62 km cut-off distance. This distinction visually differentiates between immediate and broader spatial relationships among regions.
3.6.3. Computing Adaptive Distance Weight Matrix
One characteristic of the fixed distance weight matrix is its tendency to reflect higher neighbor counts in densely populated areas, typically urban, and lower counts in sparsely populated areas, usually rural. This occurs because the matrix considers all regions within a fixed distance, resulting in urban areas having more neighbors due to their density. This effect smooths out the neighbor relationships across a larger number of neighbors.
However, to manage the number of neighbors more directly, the approach of k-nearest neighbors can be employed. This method allows for specifying the exact number of neighbors for each region, providing the option to either accept asymmetrical neighbor relationships or enforce symmetry. The choice between these options can significantly influence the analysis, as shown in the following code chunk.
<- knn2nb(knearneigh(coords, k=6))
knn6 knn6
Neighbour list object:
Number of regions: 88
Number of nonzero links: 528
Percentage nonzero weights: 6.818182
Average number of links: 6
Non-symmetric neighbours list
Similarly, we can display the content of the matrix by using str().
str(knn6)
List of 88
$ : int [1:6] 2 3 4 5 57 64
$ : int [1:6] 1 3 57 58 78 85
$ : int [1:6] 1 2 4 5 57 85
$ : int [1:6] 1 3 5 6 69 85
$ : int [1:6] 1 3 4 6 69 85
$ : int [1:6] 3 4 5 69 75 85
$ : int [1:6] 9 66 67 71 74 84
$ : int [1:6] 9 46 47 78 80 86
$ : int [1:6] 8 46 66 68 84 86
$ : int [1:6] 16 19 22 70 72 73
$ : int [1:6] 10 14 16 17 70 72
$ : int [1:6] 13 15 60 61 63 83
$ : int [1:6] 12 15 60 61 63 83
$ : int [1:6] 11 15 16 17 72 83
$ : int [1:6] 12 13 14 17 60 83
$ : int [1:6] 10 11 17 22 72 83
$ : int [1:6] 10 11 14 16 72 83
$ : int [1:6] 20 22 23 63 77 83
$ : int [1:6] 10 20 21 73 74 82
$ : int [1:6] 18 19 21 22 23 82
$ : int [1:6] 19 20 35 74 82 86
$ : int [1:6] 10 16 18 19 20 83
$ : int [1:6] 18 20 41 77 79 82
$ : int [1:6] 25 28 31 52 54 81
$ : int [1:6] 24 28 31 33 54 81
$ : int [1:6] 25 27 29 33 42 81
$ : int [1:6] 26 29 30 37 42 81
$ : int [1:6] 24 25 33 49 52 54
$ : int [1:6] 26 27 37 42 43 81
$ : int [1:6] 26 27 28 33 49 81
$ : int [1:6] 24 25 36 39 40 54
$ : int [1:6] 24 31 50 54 55 56
$ : int [1:6] 25 26 28 30 49 81
$ : int [1:6] 36 40 41 45 56 80
$ : int [1:6] 21 41 46 47 80 82
$ : int [1:6] 31 34 40 45 56 80
$ : int [1:6] 26 27 29 42 43 44
$ : int [1:6] 23 43 44 62 77 79
$ : int [1:6] 25 40 42 43 44 81
$ : int [1:6] 31 36 39 43 45 79
$ : int [1:6] 23 35 45 79 80 82
$ : int [1:6] 26 27 37 39 43 81
$ : int [1:6] 37 39 40 42 44 79
$ : int [1:6] 37 38 39 42 43 79
$ : int [1:6] 34 36 40 41 79 80
$ : int [1:6] 8 9 35 47 78 86
$ : int [1:6] 8 21 35 46 80 86
$ : int [1:6] 49 50 51 52 53 55
$ : int [1:6] 28 33 48 51 52 54
$ : int [1:6] 32 48 51 52 54 55
$ : int [1:6] 28 48 49 50 52 54
$ : int [1:6] 28 48 49 50 51 54
$ : int [1:6] 48 50 51 52 55 75
$ : int [1:6] 24 28 49 50 51 52
$ : int [1:6] 32 48 50 52 53 75
$ : int [1:6] 32 34 36 78 80 85
$ : int [1:6] 1 2 3 58 64 68
$ : int [1:6] 2 57 64 66 68 78
$ : int [1:6] 12 13 60 61 87 88
$ : int [1:6] 12 13 59 61 63 87
$ : int [1:6] 12 13 60 62 63 87
$ : int [1:6] 12 38 61 63 77 87
$ : int [1:6] 12 18 60 61 62 83
$ : int [1:6] 1 3 57 58 68 76
$ : int [1:6] 58 64 66 67 68 76
$ : int [1:6] 9 58 67 68 76 84
$ : int [1:6] 7 65 66 68 76 84
$ : int [1:6] 9 57 58 66 78 84
$ : int [1:6] 4 5 6 32 75 85
$ : int [1:6] 10 16 19 22 72 73
$ : int [1:6] 7 19 73 74 84 86
$ : int [1:6] 10 11 14 16 17 70
$ : int [1:6] 10 19 21 70 71 74
$ : int [1:6] 19 21 71 73 84 86
$ : int [1:6] 6 32 50 53 55 69
$ : int [1:6] 58 64 65 66 67 68
$ : int [1:6] 18 23 38 61 62 63
$ : int [1:6] 2 8 9 46 58 68
$ : int [1:6] 38 40 41 43 44 45
$ : int [1:6] 34 35 36 41 45 47
$ : int [1:6] 25 26 28 33 39 42
$ : int [1:6] 19 20 21 23 35 41
$ : int [1:6] 12 13 15 16 22 63
$ : int [1:6] 7 9 66 68 71 74
$ : int [1:6] 2 3 4 5 56 69
$ : int [1:6] 8 9 21 46 47 74
$ : int [1:6] 59 60 61 62 63 88
$ : int [1:6] 59 60 61 62 63 87
- attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
- attr(*, "call")= language knearneigh(x = coords, k = 6)
- attr(*, "sym")= logi FALSE
- attr(*, "type")= chr "knn"
- attr(*, "knn-k")= num 6
- attr(*, "class")= chr "nb"
In the analysis using the k-nearest neighbors method, it is observed that each county consistently has exactly six neighbors. This uniformity in the number of neighbors for each county is ensured by the method’s design, which sets a fixed number of nearest neighbors (in this case, six) for every region, regardless of their geographical size or population density. This approach guarantees that every county is equally considered in terms of its immediate spatial relationships.
3.6.3.1. Plotting Distance Based Neighbors
plot(hunan$geometry, border="lightgrey")
plot(knn6, coords, pch = 19, cex = 0.6, add = TRUE, col = "red")
3.7. Weights Based On IDW
The following code chunk uses nbdists()
from the spdep package to compute the distances between areas.
<- nbdists(wm_q, coords, longlat = TRUE)
dist <- lapply(dist, function(x) 1/(x))
ids ids
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113
[[2]]
[1] 0.01535405 0.01764308 0.01925924 0.02323898 0.01719350
[[3]]
[1] 0.03916350 0.02822040 0.03695795 0.01395765
[[4]]
[1] 0.01820896 0.02822040 0.03414741 0.01539065
[[5]]
[1] 0.03695795 0.03414741 0.01524598 0.01618354
[[6]]
[1] 0.015390649 0.015245977 0.021748129 0.011883901 0.009810297
[[7]]
[1] 0.01708612 0.01473997 0.01150924 0.01872915
[[8]]
[1] 0.02022144 0.03453056 0.02529256 0.01036340 0.02284457 0.01500600 0.01515314
[[9]]
[1] 0.02022144 0.01574888 0.02109502 0.01508028 0.02902705 0.01502980
[[10]]
[1] 0.02281552 0.01387777 0.01538326 0.01346650 0.02100510 0.02631658 0.01874863
[8] 0.01500046
[[11]]
[1] 0.01882869 0.02243492 0.02247473
[[12]]
[1] 0.02779227 0.02419652 0.02333385 0.02986130 0.02335429
[[13]]
[1] 0.02779227 0.02650020 0.02670323 0.01714243
[[14]]
[1] 0.01882869 0.01233868 0.02098555
[[15]]
[1] 0.02650020 0.01233868 0.01096284 0.01562226
[[16]]
[1] 0.02281552 0.02466962 0.02765018 0.01476814 0.01671430
[[17]]
[1] 0.01387777 0.02243492 0.02098555 0.01096284 0.02466962 0.01593341 0.01437996
[[18]]
[1] 0.02039779 0.02032767 0.01481665 0.01473691 0.01459380
[[19]]
[1] 0.01538326 0.01926323 0.02668415 0.02140253 0.01613589 0.01412874
[[20]]
[1] 0.01346650 0.02039779 0.01926323 0.01723025 0.02153130 0.01469240 0.02327034
[[21]]
[1] 0.02668415 0.01723025 0.01766299 0.02644986 0.02163800
[[22]]
[1] 0.02100510 0.02765018 0.02032767 0.02153130 0.01489296
[[23]]
[1] 0.01481665 0.01469240 0.01401432 0.02246233 0.01880425 0.01530458 0.01849605
[[24]]
[1] 0.02354598 0.01837201 0.02607264 0.01220154 0.02514180
[[25]]
[1] 0.02354598 0.02188032 0.01577283 0.01949232 0.02947957
[[26]]
[1] 0.02155798 0.01745522 0.02212108 0.02220532
[[27]]
[1] 0.02155798 0.02490625 0.01562326
[[28]]
[1] 0.01837201 0.02188032 0.02229549 0.03076171 0.02039506
[[29]]
[1] 0.02490625 0.01686587 0.01395022
[[30]]
[1] 0.02090587
[[31]]
[1] 0.02607264 0.01577283 0.01219005 0.01724850 0.01229012 0.01609781 0.01139438
[8] 0.01150130
[[32]]
[1] 0.01220154 0.01219005 0.01712515 0.01340413 0.01280928 0.01198216 0.01053374
[8] 0.01065655
[[33]]
[1] 0.01949232 0.01745522 0.02229549 0.02090587 0.01979045
[[34]]
[1] 0.03113041 0.03589551 0.02882915
[[35]]
[1] 0.01766299 0.02185795 0.02616766 0.02111721 0.02108253 0.01509020
[[36]]
[1] 0.01724850 0.03113041 0.01571707 0.01860991 0.02073549 0.01680129
[[37]]
[1] 0.01686587 0.02234793 0.01510990 0.01550676
[[38]]
[1] 0.01401432 0.02407426 0.02276151 0.01719415
[[39]]
[1] 0.01229012 0.02172543 0.01711924 0.02629732 0.01896385
[[40]]
[1] 0.01609781 0.01571707 0.02172543 0.01506473 0.01987922 0.01894207
[[41]]
[1] 0.02246233 0.02185795 0.02205991 0.01912542 0.01601083 0.01742892
[[42]]
[1] 0.02212108 0.01562326 0.01395022 0.02234793 0.01711924 0.01836831 0.01683518
[[43]]
[1] 0.01510990 0.02629732 0.01506473 0.01836831 0.03112027 0.01530782
[[44]]
[1] 0.01550676 0.02407426 0.03112027 0.01486508
[[45]]
[1] 0.03589551 0.01860991 0.01987922 0.02205991 0.02107101 0.01982700
[[46]]
[1] 0.03453056 0.04033752 0.02689769
[[47]]
[1] 0.02529256 0.02616766 0.04033752 0.01949145 0.02181458
[[48]]
[1] 0.02313819 0.03370576 0.02289485 0.01630057 0.01818085
[[49]]
[1] 0.03076171 0.02138091 0.02394529 0.01990000
[[50]]
[1] 0.01712515 0.02313819 0.02551427 0.02051530 0.02187179
[[51]]
[1] 0.03370576 0.02138091 0.02873854
[[52]]
[1] 0.02289485 0.02394529 0.02551427 0.02873854 0.03516672
[[53]]
[1] 0.01630057 0.01979945 0.01253977
[[54]]
[1] 0.02514180 0.02039506 0.01340413 0.01990000 0.02051530 0.03516672
[[55]]
[1] 0.01280928 0.01818085 0.02187179 0.01979945 0.01882298
[[56]]
[1] 0.01036340 0.01139438 0.01198216 0.02073549 0.01214479 0.01362855 0.01341697
[[57]]
[1] 0.028079221 0.017643082 0.031423501 0.029114131 0.013520292 0.009903702
[[58]]
[1] 0.01925924 0.03142350 0.02722997 0.01434859 0.01567192
[[59]]
[1] 0.01696711 0.01265572 0.01667105 0.01785036
[[60]]
[1] 0.02419652 0.02670323 0.01696711 0.02343040
[[61]]
[1] 0.02333385 0.01265572 0.02343040 0.02514093 0.02790764 0.01219751 0.02362452
[[62]]
[1] 0.02514093 0.02002219 0.02110260
[[63]]
[1] 0.02986130 0.02790764 0.01407043 0.01805987
[[64]]
[1] 0.02911413 0.01689892
[[65]]
[1] 0.02471705
[[66]]
[1] 0.01574888 0.01726461 0.03068853 0.01954805 0.01810569
[[67]]
[1] 0.01708612 0.01726461 0.01349843 0.01361172
[[68]]
[1] 0.02109502 0.02722997 0.03068853 0.01406357 0.01546511
[[69]]
[1] 0.02174813 0.01645838 0.01419926
[[70]]
[1] 0.02631658 0.01963168 0.02278487
[[71]]
[1] 0.01473997 0.01838483 0.03197403
[[72]]
[1] 0.01874863 0.02247473 0.01476814 0.01593341 0.01963168
[[73]]
[1] 0.01500046 0.02140253 0.02278487 0.01838483 0.01652709
[[74]]
[1] 0.01150924 0.01613589 0.03197403 0.01652709 0.01342099 0.02864567
[[75]]
[1] 0.011883901 0.010533736 0.012539774 0.018822977 0.016458383 0.008217581
[[76]]
[1] 0.01352029 0.01434859 0.01689892 0.02471705 0.01954805 0.01349843 0.01406357
[[77]]
[1] 0.014736909 0.018804247 0.022761507 0.012197506 0.020022195 0.014070428
[7] 0.008440896
[[78]]
[1] 0.02323898 0.02284457 0.01508028 0.01214479 0.01567192 0.01546511 0.01140779
[[79]]
[1] 0.01530458 0.01719415 0.01894207 0.01912542 0.01530782 0.01486508 0.02107101
[[80]]
[1] 0.01500600 0.02882915 0.02111721 0.01680129 0.01601083 0.01982700 0.01949145
[8] 0.01362855
[[81]]
[1] 0.02947957 0.02220532 0.01150130 0.01979045 0.01896385 0.01683518
[[82]]
[1] 0.02327034 0.02644986 0.01849605 0.02108253 0.01742892
[[83]]
[1] 0.023354289 0.017142433 0.015622258 0.016714303 0.014379961 0.014593799
[7] 0.014892965 0.018059871 0.008440896
[[84]]
[1] 0.01872915 0.02902705 0.01810569 0.01361172 0.01342099 0.01297994
[[85]]
[1] 0.011451133 0.017193502 0.013957649 0.016183544 0.009810297 0.010656545
[7] 0.013416965 0.009903702 0.014199260 0.008217581 0.011407794
[[86]]
[1] 0.01515314 0.01502980 0.01412874 0.02163800 0.01509020 0.02689769 0.02181458
[8] 0.02864567 0.01297994
[[87]]
[1] 0.01667105 0.02362452 0.02110260 0.02058034
[[88]]
[1] 0.01785036 0.02058034
3.7.1. Row-standardized Weights Matrix
Next in the process, I assign weights to each neighboring polygon. In this scenario, every neighboring polygon is given an equal weight, designated as style “W”. This is achieved by assigning the fraction 1 divided by the number of neighbors to each neighboring county and then summing up the weighted values. This approach, while straightforward and intuitive for summarizing neighbor values, does have a limitation. Specifically, polygons at the edges of the study area, having fewer neighbors, might result in their lagged values being over- or under-estimated, which could skew the understanding of spatial autocorrelation in the data. For the purposes of this exercise, I use the style “W” for its simplicity, but it is worth noting that there are other, more robust options available, like style “B”.
<- nb2listw(wm_q, style="W", zero.policy = TRUE)
rswm_q rswm_q
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Weights style: W
Weights constants summary:
n nn S0 S1 S2
W 88 7744 88 37.86334 365.9147
I use the zero.policy=TRUE
option in spdep package, which allows handling regions without neighbors. Caution is needed with this option to avoid overlooking missing neighbors, as setting zero.policy=FALSE
would result in an error for such cases. To examine the weights of the first polygon’s neighbors, I use a specific command to observe how these weights were allocated.
$weights[10] rswm_q
[[1]]
[1] 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
Each neighbor is assigned a weight of 0.125. This implies that in the calculation of average neighboring income values, the income of each neighbor is multiplied by 0.2 and then summed up. This approach of assigning equal weights ensures a uniform influence of each neighbor in the overall computation.
Additionally, I apply a similar method to create a row-standardized distance weight matrix. For this, I utilize a specific R code chunk, to standardize the weights based on distance, ensuring that the influence of each neighbor is adjusted according to their proximity. This technique is particularly useful in spatial analyses where distance plays a crucial role in determining the relationships between different areas.
<- nb2listw(wm_q, glist=ids, style="B", zero.policy=TRUE)
rswm_ids rswm_ids
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Weights style: B
Weights constants summary:
n nn S0 S1 S2
B 88 7744 8.786867 0.3776535 3.8137
$weights[1] rswm_ids
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113
summary(unlist(rswm_ids$weights))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.008218 0.015088 0.018739 0.019614 0.022823 0.040338
3.8. Spatial lag with row-standardized weights
Using a neighbor structure based on the non-zero elements of the spatial weights matrix W, a spatially lagged variable represents a weighted sum or weighted average of the neighboring values for that particular variable.
3.8.1. Spatial lag with row-standardized weights
Finally, we will calculate the average neighbor GDPPC (Gross Domestic Product Per Capita) value for each polygon. These values are commonly known as spatially lagged values.
<- lag.listw(rswm_q, hunan$GDPPC)
GDPPC.lag GDPPC.lag
[1] 24847.20 22724.80 24143.25 27737.50 27270.25 21248.80 43747.00 33582.71
[9] 45651.17 32027.62 32671.00 20810.00 25711.50 30672.33 33457.75 31689.20
[17] 20269.00 23901.60 25126.17 21903.43 22718.60 25918.80 20307.00 20023.80
[25] 16576.80 18667.00 14394.67 19848.80 15516.33 20518.00 17572.00 15200.12
[33] 18413.80 14419.33 24094.50 22019.83 12923.50 14756.00 13869.80 12296.67
[41] 15775.17 14382.86 11566.33 13199.50 23412.00 39541.00 36186.60 16559.60
[49] 20772.50 19471.20 19827.33 15466.80 12925.67 18577.17 14943.00 24913.00
[57] 25093.00 24428.80 17003.00 21143.75 20435.00 17131.33 24569.75 23835.50
[65] 26360.00 47383.40 55157.75 37058.00 21546.67 23348.67 42323.67 28938.60
[73] 25880.80 47345.67 18711.33 29087.29 20748.29 35933.71 15439.71 29787.50
[81] 18145.00 21617.00 29203.89 41363.67 22259.09 44939.56 16902.00 16930.00
In the previous section, we obtained the GDPPC (Gross Domestic Product Per Capita) of these five countries using the following code chunk.
<- wm_q[[1]]
nb1 <- hunan$GDPPC[nb1]
nb1 nb1
[1] 20981 34592 24473 21311 22879
Question: Can you see the meaning of Spatial lag with row-standardized weights now?
The following code chunk appends the spatially lag GDPPC values onto hunan
sf data frame.
<- list(hunan$NAME_3, lag.listw(rswm_q, hunan$GDPPC))
lag.list <- as.data.frame(lag.list)
lag.res colnames(lag.res) <- c("NAME_3", "lag GDPPC")
<- left_join(hunan,lag.res) hunan
The following table shows the average neighboring income values (stored in the Inc.lag
object) for each county.
head(hunan)
Simple feature collection with 6 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 110.4922 ymin: 28.61762 xmax: 112.3013 ymax: 30.12812
Geodetic CRS: WGS 84
NAME_2 ID_3 NAME_3 ENGTYPE_3 County GDPPC lag GDPPC
1 Changde 21098 Anxiang County Anxiang 23667 24847.20
2 Changde 21100 Hanshou County Hanshou 20981 22724.80
3 Changde 21101 Jinshi County City Jinshi 34592 24143.25
4 Changde 21102 Li County Li 24473 27737.50
5 Changde 21103 Linli County Linli 25554 27270.25
6 Changde 21104 Shimen County Shimen 27137 21248.80
geometry
1 POLYGON ((112.0625 29.75523...
2 POLYGON ((112.2288 29.11684...
3 POLYGON ((111.8927 29.6013,...
4 POLYGON ((111.3731 29.94649...
5 POLYGON ((111.6324 29.76288...
6 POLYGON ((110.8825 30.11675...
The following code chunk is used to plot both GDPPC and spatial lag GDPPC for comparison.
<- qtm(hunan, "GDPPC")
gdppc <- qtm(hunan, "lag GDPPC")
lag_gdppc tmap_arrange(gdppc, lag_gdppc, asp=1, ncol=2)
3.8.2. Spatial lag as a sum of neighboring values
Following steps are performed to compute the spatial lag as a sum of neighboring values with binary weight. Initially, I revisit our neighbors list and proceed to assign binary weights. This entails applying a function that designates a binary weight of 1 to each neighboring unit. To explicitly incorporate these weights, I utilize the ‘glist =’ parameter within the nb2listw
function.
The process commences by employing a function that attributes a value of 1 to each neighboring unit. This operation is facilitated using lapply
, a function that I have consistently employed for manipulating the neighbor structure in previous sections. Essentially, lapply
enables us to execute a specific function across each element within the neighbor structure.
<- lapply(wm_q, function(x) 0*x + 1)
b_weights <- nb2listw(wm_q,
b_weights2 glist = b_weights,
style = "B")
b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 448
Percentage nonzero weights: 5.785124
Average number of links: 5.090909
Weights style: B
Weights constants summary:
n nn S0 S1 S2
B 88 7744 448 896 10224
With the proper weights assigned, lag.listw
is used to compute a lag variable from the weight and GDPPC.
<- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
lag_sum <- as.data.frame(lag_sum)
lag.res colnames(lag.res) <- c("NAME_3", "lag_sum GDPPC")
The following code chunk is used to examine the result.
lag_sum
[[1]]
[1] "Anxiang" "Hanshou" "Jinshi" "Li"
[5] "Linli" "Shimen" "Liuyang" "Ningxiang"
[9] "Wangcheng" "Anren" "Guidong" "Jiahe"
[13] "Linwu" "Rucheng" "Yizhang" "Yongxing"
[17] "Zixing" "Changning" "Hengdong" "Hengnan"
[21] "Hengshan" "Leiyang" "Qidong" "Chenxi"
[25] "Zhongfang" "Huitong" "Jingzhou" "Mayang"
[29] "Tongdao" "Xinhuang" "Xupu" "Yuanling"
[33] "Zhijiang" "Lengshuijiang" "Shuangfeng" "Xinhua"
[37] "Chengbu" "Dongan" "Dongkou" "Longhui"
[41] "Shaodong" "Suining" "Wugang" "Xinning"
[45] "Xinshao" "Shaoshan" "Xiangxiang" "Baojing"
[49] "Fenghuang" "Guzhang" "Huayuan" "Jishou"
[53] "Longshan" "Luxi" "Yongshun" "Anhua"
[57] "Nan" "Yuanjiang" "Jianghua" "Lanshan"
[61] "Ningyuan" "Shuangpai" "Xintian" "Huarong"
[65] "Linxiang" "Miluo" "Pingjiang" "Xiangyin"
[69] "Cili" "Chaling" "Liling" "Yanling"
[73] "You" "Zhuzhou" "Sangzhi" "Yueyang"
[77] "Qiyang" "Taojiang" "Shaoyang" "Lianyuan"
[81] "Hongjiang" "Hengyang" "Guiyang" "Changsha"
[85] "Taoyuan" "Xiangtan" "Dao" "Jiangyong"
[[2]]
[1] 124236 113624 96573 110950 109081 106244 174988 235079 273907 256221
[11] 98013 104050 102846 92017 133831 158446 141883 119508 150757 153324
[21] 113593 129594 142149 100119 82884 74668 43184 99244 46549 20518
[31] 140576 121601 92069 43258 144567 132119 51694 59024 69349 73780
[41] 94651 100680 69398 52798 140472 118623 180933 82798 83090 97356
[51] 59482 77334 38777 111463 74715 174391 150558 122144 68012 84575
[61] 143045 51394 98279 47671 26360 236917 220631 185290 64640 70046
[71] 126971 144693 129404 284074 112268 203611 145238 251536 108078 238300
[81] 108870 108085 262835 248182 244850 404456 67608 33860
Question: Can you understand the meaning of Spatial lag as a sum of neighboring values now?
The following code chunk is used to append the lag_sum GDPPC field into hunan
sf data frame.
<- left_join(hunan, lag.res) hunan
The following code chunk is used to plot both the GDPPC and Spatial Lag Sum GDPPC for comparison.
<- qtm(hunan, "GDPPC")
gdppc <- qtm(hunan, "lag_sum GDPPC")
lag_sum_gdppc tmap_arrange(gdppc, lag_sum_gdppc, asp=1, ncol=2)
3.8.3. Spatial window average
To calculate the spatial window average using row-standardized weights, which includes the diagonal element, the neighbor structure in R needs to be modified. This involves adding the diagonal element to the neighbor list before assigning the weights.
To include the diagonal element in the neighbor list, include.self()
function from the spdep package can be used. This step ensures that each unit is also considered as its own neighbor when computing the spatial window average.
<- include.self(wm_q) wm_qs
It is important to notice that when computing the spatial window average with row-standardized weights, including the diagonal element, the following statistics change:
Number of nonzero links increases to 536.
Percentage nonzero weights increases to approximately 6.92%.
Average number of links increases to approximately 6.09.
These changes indicate that by including the diagonal element, each unit is now considered as its own neighbor, leading to an increase in the number of links and weights.
The following code chunk is used to look at the neighbor list of area [1].
1]] wm_qs[[
[1] 1 2 3 4 57 85
[1] has six neighbors instead of five.
The following code chunk utilizes nb2listw()
function is used to obtain weights.
<- nb2listw(wm_qs)
wm_qs wm_qs
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 536
Percentage nonzero weights: 6.921488
Average number of links: 6.090909
Weights style: W
Weights constants summary:
n nn S0 S1 S2
W 88 7744 88 30.90265 357.5308
Again, nb2listw()
and glist()
functions are used to explicitly assign weight values. Lastly, the lag variable from the weight structure and GDPPC variable is created.
<- lag.listw(wm_qs,
lag_w_avg_gpdpc $GDPPC)
hunan lag_w_avg_gpdpc
[1] 24650.50 22434.17 26233.00 27084.60 26927.00 22230.17 47621.20 37160.12
[9] 49224.71 29886.89 26627.50 22690.17 25366.40 25825.75 30329.00 32682.83
[17] 25948.62 23987.67 25463.14 21904.38 23127.50 25949.83 20018.75 19524.17
[25] 18955.00 17800.40 15883.00 18831.33 14832.50 17965.00 17159.89 16199.44
[33] 18764.50 26878.75 23188.86 20788.14 12365.20 15985.00 13764.83 11907.43
[41] 17128.14 14593.62 11644.29 12706.00 21712.29 43548.25 35049.00 16226.83
[49] 19294.40 18156.00 19954.75 18145.17 12132.75 18419.29 14050.83 23619.75
[57] 24552.71 24733.67 16762.60 20932.60 19467.75 18334.00 22541.00 26028.00
[65] 29128.50 46569.00 47576.60 36545.50 20838.50 22531.00 42115.50 27619.00
[73] 27611.33 44523.29 18127.43 28746.38 20734.50 33880.62 14716.38 28516.22
[81] 18086.14 21244.50 29568.80 48119.71 22310.75 43151.60 17133.40 17009.33
Next, as.data.frame()
function is used to convert the lag variable listw object into a data frame.
<- list(hunan$NAME_3, lag.listw(wm_qs, hunan$GDPPC))
lag.list.wm_qs <- as.data.frame(lag.list.wm_qs)
lag_wm_qs.res colnames(lag_wm_qs.res) <- c("NAME_3", "lag_window_avg GDPPC")
The third command line on the code chunk above renames the field names of lag_wm_q1.res object into NAME_3 and lag_window_avg GDPPC respectively.
The following code chunk is used to append lag_window_avg GDPPC values onto hunan
sf data.frame by using left_join()
of dplyr package.
<- left_join(hunan, lag_wm_qs.res) hunan
The following code chunk utilizes kable()
of knitr package to prepare a table to compare the values of lag GDPPC and Spatial window average.
%>%
hunan select("County", "lag GDPPC", "lag_window_avg GDPPC") %>%
kable()
County | lag GDPPC | lag_window_avg GDPPC | geometry |
---|---|---|---|
Anxiang | 24847.20 | 24650.50 | POLYGON ((112.0625 29.75523… |
Hanshou | 22724.80 | 22434.17 | POLYGON ((112.2288 29.11684… |
Jinshi | 24143.25 | 26233.00 | POLYGON ((111.8927 29.6013,… |
Li | 27737.50 | 27084.60 | POLYGON ((111.3731 29.94649… |
Linli | 27270.25 | 26927.00 | POLYGON ((111.6324 29.76288… |
Shimen | 21248.80 | 22230.17 | POLYGON ((110.8825 30.11675… |
Liuyang | 43747.00 | 47621.20 | POLYGON ((113.9905 28.5682,… |
Ningxiang | 33582.71 | 37160.12 | POLYGON ((112.7181 28.38299… |
Wangcheng | 45651.17 | 49224.71 | POLYGON ((112.7914 28.52688… |
Anren | 32027.62 | 29886.89 | POLYGON ((113.1757 26.82734… |
Guidong | 32671.00 | 26627.50 | POLYGON ((114.1799 26.20117… |
Jiahe | 20810.00 | 22690.17 | POLYGON ((112.4425 25.74358… |
Linwu | 25711.50 | 25366.40 | POLYGON ((112.5914 25.55143… |
Rucheng | 30672.33 | 25825.75 | POLYGON ((113.6759 25.87578… |
Yizhang | 33457.75 | 30329.00 | POLYGON ((113.2621 25.68394… |
Yongxing | 31689.20 | 32682.83 | POLYGON ((113.3169 26.41843… |
Zixing | 20269.00 | 25948.62 | POLYGON ((113.7311 26.16259… |
Changning | 23901.60 | 23987.67 | POLYGON ((112.6144 26.60198… |
Hengdong | 25126.17 | 25463.14 | POLYGON ((113.1056 27.21007… |
Hengnan | 21903.43 | 21904.38 | POLYGON ((112.7599 26.98149… |
Hengshan | 22718.60 | 23127.50 | POLYGON ((112.607 27.4689, … |
Leiyang | 25918.80 | 25949.83 | POLYGON ((112.9996 26.69276… |
Qidong | 20307.00 | 20018.75 | POLYGON ((111.7818 27.0383,… |
Chenxi | 20023.80 | 19524.17 | POLYGON ((110.2624 28.21778… |
Zhongfang | 16576.80 | 18955.00 | POLYGON ((109.9431 27.72858… |
Huitong | 18667.00 | 17800.40 | POLYGON ((109.9419 27.10512… |
Jingzhou | 14394.67 | 15883.00 | POLYGON ((109.8186 26.75842… |
Mayang | 19848.80 | 18831.33 | POLYGON ((109.795 27.98008,… |
Tongdao | 15516.33 | 14832.50 | POLYGON ((109.9294 26.46561… |
Xinhuang | 20518.00 | 17965.00 | POLYGON ((109.227 27.43733,… |
Xupu | 17572.00 | 17159.89 | POLYGON ((110.7189 28.30485… |
Yuanling | 15200.12 | 16199.44 | POLYGON ((110.9652 28.99895… |
Zhijiang | 18413.80 | 18764.50 | POLYGON ((109.8818 27.60661… |
Lengshuijiang | 14419.33 | 26878.75 | POLYGON ((111.5307 27.81472… |
Shuangfeng | 24094.50 | 23188.86 | POLYGON ((112.263 27.70421,… |
Xinhua | 22019.83 | 20788.14 | POLYGON ((111.3345 28.19642… |
Chengbu | 12923.50 | 12365.20 | POLYGON ((110.4455 26.69317… |
Dongan | 14756.00 | 15985.00 | POLYGON ((111.4531 26.86812… |
Dongkou | 13869.80 | 13764.83 | POLYGON ((110.6622 27.37305… |
Longhui | 12296.67 | 11907.43 | POLYGON ((110.985 27.65983,… |
Shaodong | 15775.17 | 17128.14 | POLYGON ((111.9054 27.40254… |
Suining | 14382.86 | 14593.62 | POLYGON ((110.389 27.10006,… |
Wugang | 11566.33 | 11644.29 | POLYGON ((110.9878 27.03345… |
Xinning | 13199.50 | 12706.00 | POLYGON ((111.0736 26.84627… |
Xinshao | 23412.00 | 21712.29 | POLYGON ((111.6013 27.58275… |
Shaoshan | 39541.00 | 43548.25 | POLYGON ((112.5391 27.97742… |
Xiangxiang | 36186.60 | 35049.00 | POLYGON ((112.4549 28.05783… |
Baojing | 16559.60 | 16226.83 | POLYGON ((109.7015 28.82844… |
Fenghuang | 20772.50 | 19294.40 | POLYGON ((109.5239 28.19206… |
Guzhang | 19471.20 | 18156.00 | POLYGON ((109.8968 28.74034… |
Huayuan | 19827.33 | 19954.75 | POLYGON ((109.5647 28.61712… |
Jishou | 15466.80 | 18145.17 | POLYGON ((109.8375 28.4696,… |
Longshan | 12925.67 | 12132.75 | POLYGON ((109.6337 29.62521… |
Luxi | 18577.17 | 18419.29 | POLYGON ((110.1067 28.41835… |
Yongshun | 14943.00 | 14050.83 | POLYGON ((110.0003 29.29499… |
Anhua | 24913.00 | 23619.75 | POLYGON ((111.6034 28.63716… |
Nan | 25093.00 | 24552.71 | POLYGON ((112.3232 29.46074… |
Yuanjiang | 24428.80 | 24733.67 | POLYGON ((112.4391 29.1791,… |
Jianghua | 17003.00 | 16762.60 | POLYGON ((111.6461 25.29661… |
Lanshan | 21143.75 | 20932.60 | POLYGON ((112.2286 25.61123… |
Ningyuan | 20435.00 | 19467.75 | POLYGON ((112.0715 26.09892… |
Shuangpai | 17131.33 | 18334.00 | POLYGON ((111.8864 26.11957… |
Xintian | 24569.75 | 22541.00 | POLYGON ((112.2578 26.0796,… |
Huarong | 23835.50 | 26028.00 | POLYGON ((112.9242 29.69134… |
Linxiang | 26360.00 | 29128.50 | POLYGON ((113.5502 29.67418… |
Miluo | 47383.40 | 46569.00 | POLYGON ((112.9902 29.02139… |
Pingjiang | 55157.75 | 47576.60 | POLYGON ((113.8436 29.06152… |
Xiangyin | 37058.00 | 36545.50 | POLYGON ((112.9173 28.98264… |
Cili | 21546.67 | 20838.50 | POLYGON ((110.8822 29.69017… |
Chaling | 23348.67 | 22531.00 | POLYGON ((113.7666 27.10573… |
Liling | 42323.67 | 42115.50 | POLYGON ((113.5673 27.94346… |
Yanling | 28938.60 | 27619.00 | POLYGON ((113.9292 26.6154,… |
You | 25880.80 | 27611.33 | POLYGON ((113.5879 27.41324… |
Zhuzhou | 47345.67 | 44523.29 | POLYGON ((113.2493 28.02411… |
Sangzhi | 18711.33 | 18127.43 | POLYGON ((110.556 29.40543,… |
Yueyang | 29087.29 | 28746.38 | POLYGON ((113.343 29.61064,… |
Qiyang | 20748.29 | 20734.50 | POLYGON ((111.5563 26.81318… |
Taojiang | 35933.71 | 33880.62 | POLYGON ((112.0508 28.67265… |
Shaoyang | 15439.71 | 14716.38 | POLYGON ((111.5013 27.30207… |
Lianyuan | 29787.50 | 28516.22 | POLYGON ((111.6789 28.02946… |
Hongjiang | 18145.00 | 18086.14 | POLYGON ((110.1441 27.47513… |
Hengyang | 21617.00 | 21244.50 | POLYGON ((112.7144 26.98613… |
Guiyang | 29203.89 | 29568.80 | POLYGON ((113.0811 26.04963… |
Changsha | 41363.67 | 48119.71 | POLYGON ((112.9421 28.03722… |
Taoyuan | 22259.09 | 22310.75 | POLYGON ((112.0612 29.32855… |
Xiangtan | 44939.56 | 43151.60 | POLYGON ((113.0426 27.8942,… |
Dao | 16902.00 | 17133.40 | POLYGON ((111.498 25.81679,… |
Jiangyong | 16930.00 | 17009.33 | POLYGON ((111.3659 25.39472… |
Lastly, qtm()
of tmap package is used to plot the lag_gdppc and w_ave_gdppc maps next to each other for quick comparison.
<- qtm(hunan, "lag_window_avg GDPPC")
w_avg_gdppc tmap_arrange(lag_gdppc, w_avg_gdppc, asp=1, ncol=2)
Use the core tmap mapping functions for more effective comparison.
3.8.4. Spatial window sum
The spatial window sum is similar to the spatial window average, but it does not use row-standardized weights. Instead, it sums the values of neighboring units without adjusting for their total number or weights. This means that each neighboring unit contributes equally to the sum, regardless of its size or importance, making it a simpler form of spatial aggregation.
The following code chunk utilizes include.self()
function from spdep package to add the diagonal element to the neighbor list.
<- include.self(wm_q)
wm_qs wm_qs
Neighbour list object:
Number of regions: 88
Number of nonzero links: 536
Percentage nonzero weights: 6.921488
Average number of links: 6.090909
Next, binary weights are assigned to the neighbor structure that includes the diagonal element.
<- lapply(wm_qs, function(x) 0*x + 1)
b_weights 1] b_weights[
[[1]]
[1] 1 1 1 1 1 1
[1] has six neighbors instead of five.
Again, nb2listw()
and glist()
functions are used to explicitly assign weight values.
<- nb2listw(wm_qs,
b_weights2 glist = b_weights,
style = "B")
b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88
Number of nonzero links: 536
Percentage nonzero weights: 6.921488
Average number of links: 6.090909
Weights style: B
Weights constants summary:
n nn S0 S1 S2
B 88 7744 536 1072 14160
With the new weight structure, lag.listw()
is used to compute the lag variable.
<- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
w_sum_gdppc w_sum_gdppc
[[1]]
[1] "Anxiang" "Hanshou" "Jinshi" "Li"
[5] "Linli" "Shimen" "Liuyang" "Ningxiang"
[9] "Wangcheng" "Anren" "Guidong" "Jiahe"
[13] "Linwu" "Rucheng" "Yizhang" "Yongxing"
[17] "Zixing" "Changning" "Hengdong" "Hengnan"
[21] "Hengshan" "Leiyang" "Qidong" "Chenxi"
[25] "Zhongfang" "Huitong" "Jingzhou" "Mayang"
[29] "Tongdao" "Xinhuang" "Xupu" "Yuanling"
[33] "Zhijiang" "Lengshuijiang" "Shuangfeng" "Xinhua"
[37] "Chengbu" "Dongan" "Dongkou" "Longhui"
[41] "Shaodong" "Suining" "Wugang" "Xinning"
[45] "Xinshao" "Shaoshan" "Xiangxiang" "Baojing"
[49] "Fenghuang" "Guzhang" "Huayuan" "Jishou"
[53] "Longshan" "Luxi" "Yongshun" "Anhua"
[57] "Nan" "Yuanjiang" "Jianghua" "Lanshan"
[61] "Ningyuan" "Shuangpai" "Xintian" "Huarong"
[65] "Linxiang" "Miluo" "Pingjiang" "Xiangyin"
[69] "Cili" "Chaling" "Liling" "Yanling"
[73] "You" "Zhuzhou" "Sangzhi" "Yueyang"
[77] "Qiyang" "Taojiang" "Shaoyang" "Lianyuan"
[81] "Hongjiang" "Hengyang" "Guiyang" "Changsha"
[85] "Taoyuan" "Xiangtan" "Dao" "Jiangyong"
[[2]]
[1] 147903 134605 131165 135423 134635 133381 238106 297281 344573 268982
[11] 106510 136141 126832 103303 151645 196097 207589 143926 178242 175235
[21] 138765 155699 160150 117145 113730 89002 63532 112988 59330 35930
[31] 154439 145795 112587 107515 162322 145517 61826 79925 82589 83352
[41] 119897 116749 81510 63530 151986 174193 210294 97361 96472 108936
[51] 79819 108871 48531 128935 84305 188958 171869 148402 83813 104663
[61] 155742 73336 112705 78084 58257 279414 237883 219273 83354 90124
[71] 168462 165714 165668 311663 126892 229971 165876 271045 117731 256646
[81] 126603 127467 295688 336838 267729 431516 85667 51028
Next, the lag variable listw object is converted into a data frame by using as.data.frame()
.
<- as.data.frame(w_sum_gdppc)
w_sum_gdppc.res colnames(w_sum_gdppc.res) <- c("NAME_3", "w_sum GDPPC")
The second command line on the code chunk above renames the field names of w_sum_gdppc.res object into NAME_3 and w_sum GDPPC respectively.
The following code chunk is used to append w_sum GDPPC values onto hunan
sf data.frame by using left_join()
function of dplyr package.
<- left_join(hunan, w_sum_gdppc.res) hunan
The following code chunk utilizes kable()
of knitr package to prepare a table to compare the values of lag GDPPC and Spatial window average.
%>%
hunan select("County", "lag_sum GDPPC", "w_sum GDPPC") %>%
kable()
County | lag_sum GDPPC | w_sum GDPPC | geometry |
---|---|---|---|
Anxiang | 124236 | 147903 | POLYGON ((112.0625 29.75523… |
Hanshou | 113624 | 134605 | POLYGON ((112.2288 29.11684… |
Jinshi | 96573 | 131165 | POLYGON ((111.8927 29.6013,… |
Li | 110950 | 135423 | POLYGON ((111.3731 29.94649… |
Linli | 109081 | 134635 | POLYGON ((111.6324 29.76288… |
Shimen | 106244 | 133381 | POLYGON ((110.8825 30.11675… |
Liuyang | 174988 | 238106 | POLYGON ((113.9905 28.5682,… |
Ningxiang | 235079 | 297281 | POLYGON ((112.7181 28.38299… |
Wangcheng | 273907 | 344573 | POLYGON ((112.7914 28.52688… |
Anren | 256221 | 268982 | POLYGON ((113.1757 26.82734… |
Guidong | 98013 | 106510 | POLYGON ((114.1799 26.20117… |
Jiahe | 104050 | 136141 | POLYGON ((112.4425 25.74358… |
Linwu | 102846 | 126832 | POLYGON ((112.5914 25.55143… |
Rucheng | 92017 | 103303 | POLYGON ((113.6759 25.87578… |
Yizhang | 133831 | 151645 | POLYGON ((113.2621 25.68394… |
Yongxing | 158446 | 196097 | POLYGON ((113.3169 26.41843… |
Zixing | 141883 | 207589 | POLYGON ((113.7311 26.16259… |
Changning | 119508 | 143926 | POLYGON ((112.6144 26.60198… |
Hengdong | 150757 | 178242 | POLYGON ((113.1056 27.21007… |
Hengnan | 153324 | 175235 | POLYGON ((112.7599 26.98149… |
Hengshan | 113593 | 138765 | POLYGON ((112.607 27.4689, … |
Leiyang | 129594 | 155699 | POLYGON ((112.9996 26.69276… |
Qidong | 142149 | 160150 | POLYGON ((111.7818 27.0383,… |
Chenxi | 100119 | 117145 | POLYGON ((110.2624 28.21778… |
Zhongfang | 82884 | 113730 | POLYGON ((109.9431 27.72858… |
Huitong | 74668 | 89002 | POLYGON ((109.9419 27.10512… |
Jingzhou | 43184 | 63532 | POLYGON ((109.8186 26.75842… |
Mayang | 99244 | 112988 | POLYGON ((109.795 27.98008,… |
Tongdao | 46549 | 59330 | POLYGON ((109.9294 26.46561… |
Xinhuang | 20518 | 35930 | POLYGON ((109.227 27.43733,… |
Xupu | 140576 | 154439 | POLYGON ((110.7189 28.30485… |
Yuanling | 121601 | 145795 | POLYGON ((110.9652 28.99895… |
Zhijiang | 92069 | 112587 | POLYGON ((109.8818 27.60661… |
Lengshuijiang | 43258 | 107515 | POLYGON ((111.5307 27.81472… |
Shuangfeng | 144567 | 162322 | POLYGON ((112.263 27.70421,… |
Xinhua | 132119 | 145517 | POLYGON ((111.3345 28.19642… |
Chengbu | 51694 | 61826 | POLYGON ((110.4455 26.69317… |
Dongan | 59024 | 79925 | POLYGON ((111.4531 26.86812… |
Dongkou | 69349 | 82589 | POLYGON ((110.6622 27.37305… |
Longhui | 73780 | 83352 | POLYGON ((110.985 27.65983,… |
Shaodong | 94651 | 119897 | POLYGON ((111.9054 27.40254… |
Suining | 100680 | 116749 | POLYGON ((110.389 27.10006,… |
Wugang | 69398 | 81510 | POLYGON ((110.9878 27.03345… |
Xinning | 52798 | 63530 | POLYGON ((111.0736 26.84627… |
Xinshao | 140472 | 151986 | POLYGON ((111.6013 27.58275… |
Shaoshan | 118623 | 174193 | POLYGON ((112.5391 27.97742… |
Xiangxiang | 180933 | 210294 | POLYGON ((112.4549 28.05783… |
Baojing | 82798 | 97361 | POLYGON ((109.7015 28.82844… |
Fenghuang | 83090 | 96472 | POLYGON ((109.5239 28.19206… |
Guzhang | 97356 | 108936 | POLYGON ((109.8968 28.74034… |
Huayuan | 59482 | 79819 | POLYGON ((109.5647 28.61712… |
Jishou | 77334 | 108871 | POLYGON ((109.8375 28.4696,… |
Longshan | 38777 | 48531 | POLYGON ((109.6337 29.62521… |
Luxi | 111463 | 128935 | POLYGON ((110.1067 28.41835… |
Yongshun | 74715 | 84305 | POLYGON ((110.0003 29.29499… |
Anhua | 174391 | 188958 | POLYGON ((111.6034 28.63716… |
Nan | 150558 | 171869 | POLYGON ((112.3232 29.46074… |
Yuanjiang | 122144 | 148402 | POLYGON ((112.4391 29.1791,… |
Jianghua | 68012 | 83813 | POLYGON ((111.6461 25.29661… |
Lanshan | 84575 | 104663 | POLYGON ((112.2286 25.61123… |
Ningyuan | 143045 | 155742 | POLYGON ((112.0715 26.09892… |
Shuangpai | 51394 | 73336 | POLYGON ((111.8864 26.11957… |
Xintian | 98279 | 112705 | POLYGON ((112.2578 26.0796,… |
Huarong | 47671 | 78084 | POLYGON ((112.9242 29.69134… |
Linxiang | 26360 | 58257 | POLYGON ((113.5502 29.67418… |
Miluo | 236917 | 279414 | POLYGON ((112.9902 29.02139… |
Pingjiang | 220631 | 237883 | POLYGON ((113.8436 29.06152… |
Xiangyin | 185290 | 219273 | POLYGON ((112.9173 28.98264… |
Cili | 64640 | 83354 | POLYGON ((110.8822 29.69017… |
Chaling | 70046 | 90124 | POLYGON ((113.7666 27.10573… |
Liling | 126971 | 168462 | POLYGON ((113.5673 27.94346… |
Yanling | 144693 | 165714 | POLYGON ((113.9292 26.6154,… |
You | 129404 | 165668 | POLYGON ((113.5879 27.41324… |
Zhuzhou | 284074 | 311663 | POLYGON ((113.2493 28.02411… |
Sangzhi | 112268 | 126892 | POLYGON ((110.556 29.40543,… |
Yueyang | 203611 | 229971 | POLYGON ((113.343 29.61064,… |
Qiyang | 145238 | 165876 | POLYGON ((111.5563 26.81318… |
Taojiang | 251536 | 271045 | POLYGON ((112.0508 28.67265… |
Shaoyang | 108078 | 117731 | POLYGON ((111.5013 27.30207… |
Lianyuan | 238300 | 256646 | POLYGON ((111.6789 28.02946… |
Hongjiang | 108870 | 126603 | POLYGON ((110.1441 27.47513… |
Hengyang | 108085 | 127467 | POLYGON ((112.7144 26.98613… |
Guiyang | 262835 | 295688 | POLYGON ((113.0811 26.04963… |
Changsha | 248182 | 336838 | POLYGON ((112.9421 28.03722… |
Taoyuan | 244850 | 267729 | POLYGON ((112.0612 29.32855… |
Xiangtan | 404456 | 431516 | POLYGON ((113.0426 27.8942,… |
Dao | 67608 | 85667 | POLYGON ((111.498 25.81679,… |
Jiangyong | 33860 | 51028 | POLYGON ((111.3659 25.39472… |
Lastly, qtm()
of tmap package is used to plot the lag_gdppc and w_ave_gdppc maps next to each other for quick comparison.
<- qtm(hunan, "w_sum GDPPC")
w_sum_gdppc tmap_arrange(lag_sum_gdppc, w_sum_gdppc, asp=1, ncol=2)
Use the core tmap mapping functions for more effective comparison.